Diagnóstico de movilidad sostenible en ciudades intermedias: caso de estudio Tunja (Colombia).

Contenido principal del artículo

Milton Fernando Ballesteros B.
Andrés Esteban Chaparro R.
Sebastián Martínez G

Resumen

La presente investigación asume como objetivo dar un diagnóstico sobre el estado de la movilidad sostenible entre 2015-2023, y brindar posibles soluciones para incentivar el uso de la movilidad sostenible como medio de transporte. Efectivamente, mediante este documento se busca dar a conocer a la ciudadanía la importancia de implementar la movilidad sostenible como medio cotidiano de transporte  Se busca aportar posibles soluciones para incentivar medios de transporte que sean amigables y nos ayuden a reducir la contaminación ambiental como son el transporte colectivo urbano, la bicicleta, el modo peatonal y la micro movilidad. Asimismo, se realizará una revisión a fondo de documentos sobre el tema de movilidad sostenible entre 2015-2023, planes que se han desarrollado en la ciudad de Tunja, entrevistas a personas que conocen el tema y encuestas a una muestra significativa de la población para analizar la percepción que esta tiene de la movilidad sostenible. Finalmente, con esta información se busca aportar un análisis detallado de los resultados de encuestas y configurar un diagnóstico sobre la movilidad sostenible en la ciudad de Tunja para 2023. 

Detalles del artículo

Cómo citar
Ballesteros B., M. F., Chaparro R., A. E., & Martínez G, S. (2025). Diagnóstico de movilidad sostenible en ciudades intermedias: caso de estudio Tunja (Colombia). L’esprit Ingénieux, 15(15), 23-48. Recuperado a partir de http://revistas.santototunja.edu.co/index.php/lingenieux/article/view/3298
Sección
Artículos

Citas

Abdel-Hay, A. S. (2017). “Properties of recycled concrete aggregate under different curing conditions”. HBRC Journal, 13(3), 271–276. https://doi.org/10.1016/j.hbrcj.2015.07.001
Abdigaliyev, A. y Hu, J. (2019). “Investigation on Improvement of Flexural Behavior of Low-Density Cellular Concrete through Fiber Reinforcement for Non-Structural Applications”. Transportation Research Record, 2673(10), 641–651.
https://doi.org/10.1177/0361198119853547
Alam, A., y Hu, J. (2023a). “Mechanical properties and energy absorption capacity of plain and fiber-reinforced single- and multi-layer cellular concrete”. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132154
Ali, Y. A. Y.; Fahmy, E. H. A.; AbouZeid, M. N.; Shaheen, Y. B. I. y Mooty, M. N. A. (2020). “Use of expanded polystyrene in developing solid brick masonry units”. Construction and Building Materials, 242, 118109. https://doi.org/10.1016/J.CONBUILDMAT.2020.118109
Álvarez, J., Martín, A. y García, P. (1995). “Historia de los morteros”. Boletín informativo del Instituto Andaluz del Patrimonio Histórico, 13, 52–59.
Alwared, A. I.; Jaeel, A. J. y Ismail, Z. Z. (2020). “New application of eco-friendly biosorbent giant reed for removal of reactive dyes from water followed by sustainable path for recycling the dyes-loaded sludge in concrete mixes”. Journal of Material Cycles and Waste Management, 22(4), 1036–1046. https://doi.org/10.1007/s10163-020-00998-4
Amran, M.; Lee, Y. H.; Vatin, N.; Fediuk, R.; Poi-Ngian, S.; Lee, Y. Y. y Murali, G. (2020, octubre 1). “Design efficiency, characteristics, and utilization of reinforced foamed concrete: A review”. Crystals, Vol. 10, pp. 1–35. MDPI AG. https://doi.org/10.3390/cryst10100948
Amran, M.; Onaizi, A. M.; Fediuk, R.; Danish, A.; Vatin, N. I.; Murali, G., … Azevedo, A. (2022). “An ultra-lightweight cellular concrete for geotechnical applications: A review”. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e01096
Amran, Y. H. M. (2020). “Influence of structural parameters on the properties of fibred-foamed concrete”. Innovative Infrastructure Solutions, 5(1), 16. https://doi.org/10.1007/s41062-020-0262-8
Amran, Y. H. M.; Farzadnia, N. y Ali, A. A. A. (2015). “Properties and applications of foamed concrete: A review”. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
Bhosale, A.; Zade, N. P.; Sarkar, P. y Davis, R. (2020). “Mechanical and physical properties of cellular lightweight concrete block masonry”. Construction and Building Materials, 248, 118621. https://doi.org/10.1016/j.conbuildmat.2020.118621
Binod, T.; Beena, A.; Ryan, M.; Ryan, C.; Diego, V. y Peter, P. (2017). “Mechanical Properties of Lightweight Cellular Concrete for Geotechnical Applications”. Journal of Materials in Civil Engineering, 29(7), 06017007.
https://doi.org/10.1061/(asce)mt.1943-5533.0001885
Bremner, T. W. (2008). “Lightweight concrete”. Developments in the Formulation and Reinforcement of Concrete, 307–323. https://doi.org/10.1016/B978-0-08-102616-8.00013-7
Chen, X., Wu, S., y Zhou, J. (2013). “Influence of porosity on compressive and tensile strength of cement mortar”. Construction and Building Materials, 40, 869–874. https://doi.org/10.1016/J.conbuildmat.2012.11.072
Concrete Pavement Technology Center, N. (2021). Lightweight Cellular Concrete for Geotechnical Applications J A N U A R Y 2 0 2 1. Recuperado de https://www.cement.org/
Cong, X. Y.; Lu, S.; Yao, Y. y Wang, Z. (2016). “Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete”. Materials y Design, 97, 155–162. https://doi.org/10.1016/J.MATDES.2016.02.068
Cuce, E.; Cuce, P. M.; Wood, C. J. y Riffat, S. B. (2014). “Toward aerogel based thermal superinsulation in buildings: A comprehensive review". Renewable and Sustainable Energy Reviews, 34, 273–299. https://doi.org/10.1016/j.rser.2014.03.017
Falliano, D.; De Domenico, D.; Ricciardi, G. y Gugliandolo, E. (2018). “Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density”. Construction and Building Materials, 165, 735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
Falliano, D.; De Domenico, D.; Sciarrone, A.; Ricciardi, G.; Restuccia, L.; Ferro, G., … Gugliandolo, E. (2019). “Investigation on the fracture behavior of foamed concrete”. Procedia Structural Integrity, 18, 525–531. Elsevier B.V.
https://doi.org/10.1016/j.prostr.2019.08.196
Flores-Johnson, E. A. y Li, Q. M. (2010). “Indentation into polymeric foams”. International Journal of Solids and Structures, 47(16), 1987–1995.
https://doi.org/10.1016/j.ijsolstr.2010.03.025
Flores-Johnson, E. A. y Li, Q. M. (2012). “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces”. Composite Structures, 94(5), 1555–1563.
https://doi.org/10.1016/j.compstruct.2011.12.017
Abdel-Hay, A. S. (2017). “Properties of recycled concrete aggregate under different curing conditions”. HBRC Journal, 13(3), 271–276. https://doi.org/10.1016/j.hbrcj.2015.07.001
Abdigaliyev, A. y Hu, J. (2019). “Investigation on Improvement of Flexural Behavior of Low-Density Cellular Concrete through Fiber Reinforcement for Non-Structural Applications”. Transportation Research Record, 2673(10), 641–651.
https://doi.org/10.1177/0361198119853547
Alam, A., y Hu, J. (2023a). “Mechanical properties and energy absorption capacity of plain and fiber-reinforced single- and multi-layer cellular concrete”. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132154
Ali, Y. A. Y.; Fahmy, E. H. A.; AbouZeid, M. N.; Shaheen, Y. B. I. y Mooty, M. N. A. (2020). “Use of expanded polystyrene in developing solid brick masonry units”. Construction and Building Materials, 242, 118109. https://doi.org/10.1016/j.conbuildmat.2020.118109
Álvarez, J.; Martín, A. y García, P. (1995). “Historia de los morteros”. Boletín informativo del Instituto Andaluz del Patrimonio Histórico, 13, 52–59.
Alwared, A. I.; Jaeel, A. J. y Ismail, Z. Z. (2020). “New application of eco-friendly biosorbent giant reed for removal of reactive dyes from water followed by sustainable path for recycling the dyes-loaded sludge in concrete mixes”. Journal of Material Cycles and Waste Management, 22(4), 1036–1046. https://doi.org/10.1007/s10163-020-00998-4
Amran, M.; Lee, Y. H.; Vatin, N.; Fediuk, R.; Poi-Ngian, S.; Lee, Y. Y. y Murali, G. (2020, octubre 1). “Design efficiency, characteristics, and utilization of reinforced foamed concrete: A review”. Crystals, Vol. 10, pp. 1–35. MDPI AG. https://doi.org/10.3390/cryst10100948
Amran, M.; Onaizi, A. M.; Fediuk, R.; Danish, A.; Vatin, N. I.; Murali, G., … Azevedo, A. (2022). “An ultra-lightweight cellular concrete for geotechnical applications – A review”. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e01096
Amran, Y. H. M. (2020). “Influence of structural parameters on the properties of fibred-foamed concrete”. Innovative Infrastructure Solutions, 5(1), 16. https://doi.org/10.1007/s41062-020-0262-8
Amran, Y. H. M.; Farzadnia, N. y Ali, A. A. A. (2015). “Properties and applications of foamed concrete: A review”. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
Bhosale, A.; Zade, N. P.; Sarkar, P. y Davis, R. (2020). “Mechanical and physical properties of cellular lightweight concrete block masonry”. Construction and Building Materials, 248, 118621. https://doi.org/10.1016/j.conbuildmat.2020.118621
Binod, T.; Beena, A.; Ryan, M.; Ryan, C.; Diego V. y Peter, P. (2017). “Mechanical Properties of Lightweight Cellular Concrete for Geotechnical Applications”. Journal of Materials in Civil Engineering, 29(7), 06017007. https://doi.org/10.1061/(asce)mt.1943-5533.0001885
Bremner, T. W. (2008). “Lightweight concrete”. Developments in the Formulation and Reinforcement of Concrete, 307–323. https://doi.org/10.1016/B978-0-08-102616-8.00013-7
Chen, X.; Wu, S. y Zhou, J. (2013). “Influence of porosity on compressive and tensile strength of cement mortar”. Construction and Building Materials, 40, 869–874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
Concrete Pavement Technology Center, N. (2021). “Lightweight Cellular Concrete for Geotechnical Applications January 2 0 2 1”. Recuperado de: https://www.cement.org/
Cong, X. Y.; Lu, S.; Yao, Y. y Wang, Z. (2016). “Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete”. Materials y Design, 97, 155–162. https://doi.org/10.1016/j.matdes.2016.02.068
Cuce, E.; Cuce, P. M.; Wood, C. J. y Riffat, S. B. (2014). “Toward aerogel based thermal superinsulation in buildings: A comprehensive review”. Renewable and Sustainable Energy Reviews, 34, 273–299. https://doi.org/10.1016/j.rser.2014.03.017
Falliano, D.; De Domenico, D.; Ricciardi, G. y Gugliandolo, E. (2018). “Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density”. Construction and Building Materials, 165, 735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
Falliano, D.; De Domenico, D.; Sciarrone, A.; Ricciardi, G.; Restuccia, L.; Ferro, G., … Gugliandolo, E. (2019). “Investigation on the fracture behavior of foamed concrete”. Procedia Structural Integrity, 18, 525–531. Elsevier B.V. https://doi.org/10.1016/j.prostr.2019.08.196
Flores-Johnson, E. A. y Li, Q. M. (2010). “Indentation into polymeric foams”. International Journal of Solids and Structures, 47(16), 1987–1995.
https://doi.org/10.1016/j.ijsolstr.2010.03.025
Flores-Johnson, E. A. y Li, Q. M. (2012). “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces”. Composite Structures, 94(5), 1555–1563. https://doi.org/10.1016/j.compstruct.2011.12.017
Gobierno de la República de Colombia. Reglamento Colombiano de Construcción Sismo Resistente NSR-10 Título C., Pub. L. No. Decreto No. 1000 de 2010 (2010). Colombia.
Hajimohammadi, A.; Ngo, T. y Mendis, P. (2018). “Enhancing the strength of pre-made foams for foam concrete applications”. Cement and Concrete Composites, 87, 164–171. https://doi.org/10.1016/j.cemconcomp.2017.12.014
Hashim, M. y Tantray, M. (2021). “Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete”. Case Studies in Construction Materials, 14. https://doi.org/10.1016/j.cscm.2021.e00524
Herki, B. M. A. (2020). “Lightweight concrete using local natural lightweight aggregate”. Journal of Critical Reviews, Vol. 7, pp. 490–497. Innovare Academics Sciences Pvt. Ltd. https://doi.org/10.31838/jcr.07.04.93
Hossain, Z., y Islam, K. T. (2022). “Prospects of rice husk ash as a construction material. Sustainable Concrete Made with Ashes and Dust from Different Sources”. Materials, Properties and Applications, 61–92. https://doi.org/10.1016/B978-0-12-824050-2.00009-7
Izquierdo Cárdenas, M. I. y Ortega Rivera, O. E. (2017). “Desarrollo y aplicación del concreto celular a base de aditivo espumante para la elaboración de bloques macizos destinados a tabiquerías no portantes en edificaciones”. Universidad Peruana de Ciencias Aplicadas, Lima.
Jason, L.; Huerta, A.; Pijaudier-Cabot, G. y Ghavamian, S. (2006). “An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model”. Computer Methods in Applied Mechanics and Engineering, 195(52), 7077–7092. https://doi.org/10.1016/J.CMA.2005.04.017
Jaya, R. P. (2020). “Porous concrete pavement containing nanosilica from black rice husk ash”. New Materials in Civil Engineering, 493–527. https://doi.org/10.1016/B978-0-12-818961-0.00014-4
Kadela, M.; Kozłowski, M. y Kukiełka, A. (2017). “Application of Foamed Concrete in Road Pavement - Weak Soil System”. Procedia Engineering, 193, 439–446. Elsevier Ltd. https://doi.org/10.1016/j.proeng.2017.06.235
Kim, H. K.; Jeon, J. H. y Lee, H. K. (2012). “Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air”. Construction and Building Materials, 29, 193–200. https://doi.org/10.1016/j.conbuildmat.2011.08.067
Kumar, V. K.; Priya, A. K.; Manikandan, G.; Naveen, A. S.; Nitishkumar, B. y Pradeep, P. (2021). “Review of materials used in light weight concrete”. Materials Today: Proceedings, 37(Part 2), 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425
Laukaitis, A. y Fiks, B. (2006). “Acoustical properties of aerated autoclaved concrete”. Applied Acoustics, 67(3), 284–296. https://doi.org/10.1016/j.apacoust.2005.07.003
Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Amran, Y. H. M. … Baranov, A. (2020). “Improving the behaviors of foam concrete through the use of composite binder”. Journal of Building Engineering, 31, 101414. https://doi.org/10.1016/j.jobe.2020.101414
Li, T.; Huang, F.; Zhu, J.; Tang, J. y Liu, J. (2020). “Effect of foaming gas and cement type on the thermal conductivity of foamed concrete”. Construction and Building Materials, 231, 117197. https://doi.org/10.1016/j.conbuildmat.2019.117197
Liu, X.; Lu, M.; Sheng, K.; Shao, Z.; Yao, Y. y Hong, B. (2023). “Development of new material for geopolymer lightweight cellular concrete and its cementing mechanism”. Construction and Building Materials, 367. https://doi.org/10.1016/j.conbuildmat.2022.130253
Metha, K. M. P. (1998). “Concreto Estructura, propiedades y materiales (segunda; Instituto Mexicano del Cemento y del Concreto A. C., Ed.)”. Florida: Instituto Mexicano del Cemento y del Concreto A. C.
Moore, R. T. (1972). Penetration resistance tests of reinforced concrete barriers. National Institute of Standards and Technology. Retrieved September 28, 2023, from https://www.nist.gov/publications/penetration-resistance-tests-reinforced-concrete-barriers.
Mugahed Amran, Y. H.; Alyousef, R.; Alabduljabbar, H.; Alrshoudi, F. y Rashid, R. S. M. (2019). “Influence of slenderness ratio on the structural performance of lightweight foam concrete composite panel”. Case Studies in Construction Materials, 10. https://doi.org/10.1016/j.cscm.2019.e00226
Mugahed Amran, Y. H.; Alyousef, R.; Alabduljabbar, H.; Khudhair, M. H. R.; Hejazi, F.; Alaskar, A. … Siddika, A. (2020). “Performance properties of structural fibred-foamed concrete”. Results in Engineering, 5. https://doi.org/10.1016/j.rineng.2019.100092
Narayanan, N. y Ramamurthy, K. (2000). “Microstructural investigations on aerated concrete”. Cement and Concrete Research, 30(3), 457–464. https://doi.org/10.1016/S0008-8846(00)00199-X
National Standards Authority of Ireland. (2005). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Retrieved September 28, 2023, from https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf.
Osorio Saraz, J. A., Vélez Restrepo, J. M., & Ciro Velásquez, H. J. (2007). Revista Facultad Nacional de Agronomía-Medellín, 60(2), 4067–4076. Retrieved from http://www.redalyc.org/articulo.oa?id=179914078013.
Pacheco Tinoco, R. D. (2018). Propiedades fisico-mecánicas del concreto celular con poliestireno expandido y su aplicación en la industria de la construcción. Universidad César Vallejo, Lima. Retrieved from https://repositorio.ucv.edu.pe/handle/20.500.12692/27247.
Panesar, D. K. (2013). “Cellular concrete properties and the effect of synthetic and protein foaming agents”. Construction and Building Materials, 44, 575–584.
https://doi.org/10.1016/j.conbuildmat.2013.03.024
Perry, S. H.; Bischoff, P. H. y Yamura, K. (1991). “Mix details and material behaviour of polystyrene aggregate concrete”. Magazine of Concrete Research, 43(154), 71–76. https://doi.org/10.1680/macr.1991.43.154.71
Raj, A.; Sathyan, D. y Mini, K. M. (2019). “Physical and functional characteristics of foam concrete: A review”. Construction and Building Materials, 221, 787–799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
Ramamurthy, K.; Kunhanandan Nambiar, E. K. y Indu Siva Ranjani, G. (2009). “A classification of studies on properties of foam concrete”. Cement and Concrete Composites, 31(6), 388–396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
Ratna, D. (2012). “Thermal Properties of Thermosets”. Thermosets: Structure, Properties and Applications, 62–91. https://doi.org/10.1533/9780857097637.1.62
Sánchez de Guzmán, D. (2001). Tecnología del concreto y del mortero. Santafé de Bogotá, D. C.: (5ª ed.; Bhandar Editor Ltda, Ed.).
Schenk, M., & Guest, S. D. (2011). Folded shell structures. Retrieved from https://www-structures.eng.cam.ac.uk/system/files/documents/folded-shell-structures.pdf.
Shackelford, J. F. (2005). Introducción a la ciencia de materiales para ingenieros (6ª ed.). Pearson Educación.
Song, Y., y Lange, D. A. (2020). “Crushing Behavior and Crushing Strengths of Low-Density Foam Concrete”. ACI Materials Journal, 117, 43–52.
https://doi.org/10.20944/preprints201902.0208.v1
Stolz, J., Boluk, Y. y Bindiganavile, V. (2018). “Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete”. Cement and Concrete Composites, 94, 24–32. https://doi.org/10.1016/j.cemconcomp.2018.08.004
Thienel, K. C.; Haller, T. y Beuntner, N. (2020, marzo 1). “Lightweight concrete-from basics to innovations”. Materials, Vol. 13. MDPI AG. https://doi.org/10.3390/ma13051120
Universidad Nacional de Colombia, Universidad del Quindío e Instituto Nacional de Vías. (2022). “Especificaciones generales de construcción de carreteras”. Bogotá.
Vaidya, A. y Pathak, K. (2019). “Mechanical stability of dental materials: Applications of Nanocomposite”. Materials in Dentistry, 285–305. https://doi.org/10.1016/B978-0-12-813742-0.00017-1
Valore, R. C. (1954). “Cellular Concretes Part 1: Composition and Methods of Preparation”. ACI Journal Proceedings, 50(5). https://doi.org/10.14359/11794
Wang, P. y Zhao, C. (2015). “Study on reducing railway noise by porous concrete sound-absorbing panel”. Materials Research Innovations, 19(sup5), S5-1156-S5-1160.
https://doi.org/10.1179/1432891714Z.0000000001269
Wong, K. H. (2007). Thermal conductivity of foamed concrete. ScholarBank@NUS Repository. Retrieved from https://scholarbank.nus.edu.sg/handle/10635/17572.
Xu, Q.; Liu, L.; Wang, X.; Wen, P. y Yu, G. (2019). “Strength analysis of the cast-in-situ foamed lightweight soil materials”. IOP Conference Series: Earth and Environmental Science, 304(5), 052130. https://doi.org/10.1088/1755-1315/304/5/052130
Yahya, M., & Amran, H. (2016). Determination of structural behavior of precast foamed concrete sandwich panel. Universiti Putra Malaysia. Retrieved from http://psasir.upm.edu.my/id/eprint/70170/1/FK%202016%202%20-%20IR.pdf.
Zamora Terrones, L. P. (2015). “Diseño de un bloque de concreto celular y su aplicación como unidad de albañilería no estructural”. Universidad Nacional de Cajamarca (Perú).
Zhang, J. J. (2019). “Rock physical and mechanical properties”. Applied Petroleum Geomechanics, 29–83. https://doi.org/10.1016/B978-0-12-814814-3.00002-2
Zhang, S.; Cao, K.; Wang, C.; Wang, X.; Deng, G. y Wei, P. (2020). “Influence of the porosity and pore size on the compressive and splitting strengths of cellular concrete with millimeter-size pores”. Construction and Building Materials, 235.
https://doi.org/10.1016/j.conbuildmat.2019.117508
Zherebtsov, S.; Semenova, I. P.; Garbacz, H. y Motyka, M. (2019). “Advanced mechanical properties”. Nanocrystalline Titanium, 103–121. https://doi.org/10.1016/B978-0-12-814599-9.00006-7
Zhou, L.; Deng, Z.; Li, W.; Ren, J.; Zhu, Y. y Mao, L. (2023). “Mechanical behavior of the cellular concrete and numerical simulation based on meso-element equivalent method”. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132118

Artículos más leídos del mismo autor/a