INGENIERÍA Y AMBIENTE: RETOS Y SOLUCIONES SOSTENIBLES EN EL SIGLO XXI.

Estimados lectores: El volumen 14 de la *Revista L'Esprit Ingenieux*, de la Universidad Santo Tomás Seccional Tunja, presenta en esta ocasión una serie de investigaciones que abarcan las diferentes áreas del conocimiento en ingeniería.

Para esta versión, se presentan investigaciones que pretenden mostrar la relación entre la ingeniería y el ambiente, partiendo de que el cambio climático es la consecuencia de un estilo erróneo de desarrollo a nivel global, el cual requiere de forma inmediata y sin excepción una transformación en la concepción de desarrollo. Lo cual revela la necesidad de promover una transformación global, en búsqueda de garantizar el bienestar de la población y, al mismo tiempo, generar estrategias para la conservación, recuperación y cuidado del patrimonio ambiental y cultural.

En este proceso, surgen una serie de alternativas económicas que buscan hacer frente al desafío del *Siglo XXI*, contexto donde los planes estratégicos de los países deben estar orientados a la adaptación al cambio climático y al mismo tiempo a generar procesos de crecimiento económico que en conjunto mejoren las condiciones sociales y propicien la conservación del medio ambiente.

Efectivamente, se presentan alternativas como la *Bioeconomía*, basada en el consumo y la producción de bienes y servicios derivados del uso directo y la transformación sostenible de los recursos biológicos; la *Economía Circular*, que se presenta como un sistema de aprovechamiento de los recursos con la reincorporación de los residuos de una actividad económica en un nuevo ciclo productivo; la *Inteligencia Ecológica*, que impulsa un cambio en la actitud y forma de vida, concientizando sobre las consecuencias -producto de una decisión en el ambiente-, y la *Eficiencia Energética*, que se establece dada la necesidad de incorporar elementos ambientalmente competentes en la generación de energía de manera eficiente y eficaz, desarrollando una canasta energética diversificada mediante la incorporación de tecnologías limpias, las cuales buscan la minimización de la generación y toxicidad de los contaminantes y residuos en la fuente de origen.

En conjunto, todas estas alternativas se consideran estrategias que buscan reducir la vulnerabilidad producto de los efectos del *Cambio Climático* y que como similitud presentan planes basados en estilos económicos de cooperación y confianza, promueven una economía de justicia, fraternidad y compasión, basados en la generación de nuevas ideas encaminadas a alcanzar un equilibrio holístico, con fundamento ético amplio, con factores y conceptos humanísticos, en pro de una actividad socio-económica más justa y responsable para los seres humanos conforme a las exigencias de la biosfera.

En este orden de ideas, la multidisciplinariedad, el pensamiento holístico y la interdisciplinariedad, constituyen el eje clave para que desde la ingeniería se aporte a la conservación de los recursos y se generen aportes positivos a nivel social, económico y ambiental.

En este contexto, se presenta un primer artículo intitulado "Análisis Estructural del Templo de Huaytará-Huancavelica, Perú", que presenta una perspectiva holística de un análisis estructural no lineal del templo para evaluar su comportamiento ante acciones sísmicas. Comienza con una revisión del estado actual y una investigación histórica sobre las fases de construcción, para la generación de un modelo geométrico 3D -utilizando técnicas fotogramétricas-, seguido de una descripción detallada de los componentes estructurales y materiales encontrados durante los trabajos de campo, identificando las causas de los daños actuales y los elementos más vulnerables del templo, socializando hallazgos que proporcionan una base sólida para futuras intervenciones, y asegurando así la preservación y estabilidad de la iglesia histórica de San Juan Bautista de Huaytará.

Para el Artículo 2, contamos con "Diagnóstico de movilidad sostenible en ciudades intermedias: caso de estudio Tunja", sobre el estado de la movilidad sostenible entre 2015-2023 y proyectos desarrollados en el Municipio de Tunja, identificando posibles soluciones para incentivar el uso de la movilidad sostenible como medio de transporte, con miras a incentivar medios de transporte que reduzcan los impactos negativos en el ambiente, tales como el transporte colectivo urbano, la bicicleta, el modo peatonal y la micro movilidad.

El Artículo 3: "La calidad de la información y del sistema de gestión del conocimiento", expone la importancia que implica el manejo y la calidad de la información en el manejo de los recursos hídricos, pretendiendo aportar en la gobernanza de cuencas rurales (índice *GWI*), que busca en 18 ítems una evaluación de las cuencas rurales para aprovechar el agua sostenible. Para tal proyecto se llevó a cabo en el municipio de Cómbita (Boyacá, Colombia) una metodología que evaluó cuatro factores para el manejo y calidad de la información desde la creación de un sistema que permitió ubicar espacialmente y poder georreferenciar los datos; asimismo, se abordó el uso del suelo debido a que la demanda de agua de este se puede ver atribuido a cultivos e identificar acueductos para riego agrícola o puntos de explotación de agua. También se asumió la identificación de la toma de agua actual, que facilitó conocer el acceso de agua potable en el acueducto rural y un análisis de la calidad del servicio actual, y adquirió fuerte repercusión debido a que en algunos casos se presenta tubería antigua, y acceso limitado por horas o días de servicio.

El Artículo 4: "Análisis comparativo de las propiedades mecánicas del concreto celular: una perspectiva aplicativa", caracteriza un material moderno y con grandes beneficios: el concreto celular, mediante diferentes propiedades mecánicas y estructurales de acuerdo con las investigaciones experimentales realizadas a nivel mundial. Se realizó un análisis comparativo entre seis diferentes especímenes experimentales preparados en diferentes investigaciones para relacionarlos así con el concreto estructural, y luego realizar un análisis aplicativo del concreto celular, para finalmente comentar sobre el uso del concreto celular en Colombia.

Por otra parte, el Artículo 5: "Análisis comparativo del Impacto de las Variables de Población, *DBO* y temperatura en Lagunas Facultativas", responde a un análisis comparativo de factores como la población, la demanda biológica de oxígeno (*DBO*) y la temperatura, para determinar las características de las lagunas de estabilización facultativas para conseguir disminución de la *DBO* presente.

A su vez, el Artículo 6: "Revisión de la variación en profundidad de lagunas facultativas", apunta hacia las lagunas de estabilización -en específico las facultativas-, que brindan una solución óptima para el tratamiento de aguas residuales, enfocándose en la remoción del *DBO* a partir de diferentes procesos naturales y elementos prediseñados. Se analizó la posibilidad de estudiar la profundidad más detenidamente, previo a la construcción de una laguna con el fin de obtener tiempos de retención adecuados y eficacia en la depuración del agua tratada.

En el Artículo 7: "Desarrollo y análisis de diseño para una laguna facultativa", se muestra cómo diseñar lagunas facultativas siguiendo el método de McGarry & Pescot (1998) para determinar sus características en función de seis poblaciones con su respectiva información. También se expone la importancia de estas lagunas como una solución efectiva y económica para el tratamiento del agua en diversas poblaciones.

Finalmente, anotamos que con la versión No. 14 de la *Revista L'Esprit Ingenieux*, se pretende mostrar investigaciones prácticas en torno al quehacer de la ingeniería y su articulación con el ambiente, generando soluciones que aporten a la conservación de los recursos naturales, y contribuyan a la generación de estrategias para la adaptación al cambio climático.

Yuddy Alejandra Castro Ortegón, Ph. D.

Docente Investigadora
Universidad Santo Tomás Seccional Tunja

"ENGINEERING AND ENVIRONMENT: SUSTAINABLE CHALLENGES AND SOLUTIONS IN THE 21ST CENTURY"

Dear readers, Volume 14 of L'Esprit Ingenieux from Universidad Santo Tomás Tunja presents a series of research studies spanning various fields of engineering knowledge.

In this edition, the research focuses on the relationship between engineering and the environment, acknowledging that climate change is a consequence of a flawed global development model, which urgently requires a transformation in the conception of development. This highlights the necessity to promote a global transformation aimed at ensuring the well-being of the population while simultaneously generating strategies for the conservation, recovery, and care of environmental and cultural heritage.

In this process, several economic alternatives have emerged to address the challenges of the 21st century, where the strategic plans of countries must be oriented towards adapting to climate change while generating economic growth processes that together improve social conditions and promote environmental conservation.

Alternatives such as the Bioeconomy, which is based on the consumption and production of goods and services derived from the direct use and sustainable transformation of biological resources; the Circular Economy, which is presented as a system for resource utilization by reincorporating the waste from one economic activity into a new production cycle; Ecological Intelligence, which drives a change in attitude and lifestyle, raising awareness of the environmental consequences of decisions; and Energy Efficiency, which is established given the need to incorporate environmentally competent elements into the efficient and effective generation of energy, developing a diversified energy mix with the incorporation of clean technologies aimed at minimizing the generation and toxicity of pollutants and waste at the source.

Together, all these alternatives are considered strategies aimed at reducing vulnerability to the effects of climate change and share a common feature: they are based on economic models of cooperation and trust. They promote an economy of justice, fraternity, and compassion, driven by the generation of new ideas aimed at achieving a holistic balance, grounded in a broad ethical foundation with humanistic factors and concepts, in favor of a fairer and more responsible socio-economic activity for human beings in accordance with the demands of the biosphere.

In this context, multidisciplinarity, holistic thinking, and interdisciplinarity are key axes for engineering to contribute to the conservation of resources and generate positive contributions at social, economic, and environmental levels.

In this context, the first article, "Structural Analysis of the Temple of Huaytará-Huancavelica, Peru," presents a holistic perspective on a nonlinear structural analysis of the church to assess its behavior under seismic actions. It begins with a review of the current state and historical research on construction phases to generate a 3D geometric model using photogrammetric techniques, followed by a detailed description of the structural components and materials found during fieldwork, identifying the causes of current damage and the most vulnerable elements of the church, sharing findings that provide a solid foundation for future interventions to ensure the preservation and stability of the historic church of San Juan Bautista de Huaytará.

The second article, "Diagnosis of Sustainable Mobility in Intermediate Cities: The Case of Tunja," presents a diagnosis of the state of sustainable mobility between 2015 and 2023 and projects developed in the Municipality of Tunja, identifying possible solutions to encourage the use of sustainable mobility as a means of transport and promote modes of transportation that reduce negative environmental impacts, such as urban collective transport, bicycles, pedestrian modes, and micro-mobility.

The third article, "Quality of Information and Knowledge Management Systems," highlights the importance of information management and quality in the management of water resources, aiming to contribute to the governance of rural basins using the GWI index, which seeks to evaluate rural basins in eighteen items to make sustainable use of water. A methodology was applied in the municipality of Cómbita to evaluate four factors for information management and quality, including the creation of a system to spatially locate and georeference data; land use due to its impact on water demand, which can be attributed to crops and identifying aqueducts for agricultural irrigation or water extraction points; identification of the current water intake to understand access to potable water in the rural aqueduct; and an analysis of the quality of the current service, which is significant because in some cases, old pipelines and limited or sporadic service are present.

The fourth article, "Comparative Analysis of the Mechanical Properties of Cellular Concrete: An Applicative Perspective," characterizes a modern material with significant benefits: cellular concrete, through different mechanical and structural properties based on experimental research conducted worldwide. A comparative analysis is conducted between six different experimental specimens prepared in various studies to relate them to structural concrete, followed by an applicative analysis of cellular concrete, with final comments on the use of cellular concrete in Colombia.

The fifth article, "Comparative Analysis of the Impact of Population, BOD, and Temperature Variables on Facultative Lagoons," presents a comparative analysis of factors such as population, biological oxygen demand (BOD), and temperature to determine the characteristics of facultative stabilization ponds for reducing BOD.

Additionally, the sixth article, "Review of Depth Variation in Facultative Lagoons," focuses on stabilization ponds, particularly facultative lagoons, as an optimal solution for wastewater treatment, emphasizing BOD removal through various natural processes and pre-designed elements. The article analyzes the possibility of studying depth more carefully before constructing a pond to achieve adequate retention times and effectiveness in the purification of treated water.

The seventh article, "Development and Design Analysis for a Facultative Lagoon," shows how to design facultative lagoons using the McGarry & Pescot (1998) method to determine their characteristics based on six populations with their respective information. It also emphasizes the importance of these lagoons as an effective and economical solution for water treatment in various populations.

Finally, with the XX edition of the magazine XX, we aim to showcase practical research related to the field of engineering and its connection with the environment, generating solutions that contribute to the conservation of natural resources and support the development of strategies for climate change adaptation.

Yuddy Alejandra Castro Ortegón, PhD.
Research Professor
Universidad Santo Tomás Seccional Tunja